Function nyquist1: Plotting Nyquist Frequency Response for Continuous-Time Linear Systems
Below is the function nyquist1.m. This function is a modified version of the nyquist command, and has all the same attributes as the original, with a few improvements. nyquist1.m takes poles on the imaginary axis into account when creating the Nyquist plot, and plots around them. Copy the following text into a file nyquist1.m, and put it in the same directory as the MATLAB software, or in a directory which is contained in MATLAB's search path.
function [reout,imt,w] = nyquist1(a,b,c,d,iu,w) %NYQUIST1 Nyquist frequency response for continuous-time linear systems. % % This Version of the NYQUIST Command takes into account poles at the % jw-axis and loops around them when creating the frequency vector in order % to produce the appropriate Nyquist Diagram (The NYQUIST command does % not do this and therefore produces an incorrect plot when we have poles in the % jw axis). % % NOTE: This version of NYQUIST1 does not account for pole-zero % cancellation. Therefore, the user must simplify the transfer function before using % this command. % % NYQUIST(A,B,C,D,IU) produces a Nyquist plot from the single input % IU to all the outputs of the system: % . -1 % x = Ax + Bu G(s) = C(sI-A) B + D % y = Cx + Du RE(w) = real(G(jw)), IM(w) = imag(G(jw)) % % The frequency range and number of points are chosen automatically. % % NYQUIST1(NUM,DEN) produces the Nyquist plot for the polynomial % transfer function G(s) = NUM(s)/DEN(s) where NUM and DEN contain % the polynomial coefficients in descending powers of s. % % NYQUIST1(A,B,C,D,IU,W) or NYQUIST(NUM,DEN,W) uses the user-supplied % freq. vector W which must contain the frequencies, in radians/sec, % at which the Nyquist response is to be evaluated. When invoked % with left hand arguments, % [RE,IM,W] = NYQUIST(A,B,C,D,...) % [RE,IM,W] = NYQUIST(NUM,DEN,...) % returns the frequency vector W and matrices RE and IM with as many % columns as outputs and length(W) rows. No plot is drawn on the % screen. % See also: LOGSPACE,MARGIN,BODE, and NICHOLS. % % J.N. Little 10-11-85 % Revised ACWG 8-15-89, CMT 7-9-90, ACWG 2-12-91, 6-21-92, % AFP 2-23-93 % WCM 8-31-97 % % ******************************************************************** % Modifications made to the nyquist - takes into account poles on jw axis. % then goes around these to make up frequency vector if nargin==0, eval('exresp(''nyquist'')'), return, end % --- Determine which syntax is being used --- nargin1 = nargin; nargout1 = nargout; if (nargin1==1), % System form without frequency vector [num,den]=tfdata(a,'v'); z = roots(num); p = roots(den); zp = [z;p]; wpos = zp(find(abs(zp)>0)); if(min(abs(p)) == 0) wstart = max(eps, 0.03*min([1;wpos])); else wstart = max(eps, 0.03*min(abs(zp))); end wstop = max([1000;30*wpos]); w = logspace(log10(wstart),log10(wstop),max(51,10*max(size(zp))+1)); %w = freqint2(num,den,30); [ny,nn] = size(num); nu = 1; %error('Wrong number of input arguments.'); elseif (nargin1==2), if(isa(a,'ss')|isa(a,'tf')|isa(a,'zpk')) % System with frequency vector [num,den]=tfdata(a,'v'); w = b; else % Transfer function form without frequency vector num = a; den = b; z = roots(num); p = roots(den); zp = [z;p]; wpos = zp(find(abs(zp)>0)); if(min(abs(p)) == 0) wstart = max(eps, 0.03*min([1;wpos])); else wstart = max(eps, 0.03*min(abs(zp))); end wstop = max([1000;30*wpos]); w = logspace(log10(wstart),log10(wstop),max(51,10*max(size(zp))+1)); %w = freqint2(num,den,30); end [ny,nn] = size(num); nu = 1; elseif (nargin1==3), % Transfer function form with frequency vector num = a; den = b; w = c; [ny,nn] = size(num); nu = 1; elseif (nargin1==4), % State space system, w/o iu or frequency vector error(abcdchk(a,b,c,d)); [num,den] = ss2tf(a,b,c,d); [z,p,k]= ss2zp(a,b,c,d); [num,den] = zp2tf(z,p,k); zp = [z;p]; wpos = zp(find(abs(zp)>0)); if(min(abs(p)) == 0) wstart = max(eps, 0.03*min([1;wpos])); else wstart = max(eps, 0.03*min(abs(zp))); end wstop = max([1000;30*wpos]); w = logspace(log10(wstart),log10(wstop),max(51,10*max(size(zp))+1)); %w = freqint2(a,b,c,d,30); nargin1 = 2;%[iu,nargin,re,im]=mulresp('nyquist',a,b,c,d,w,nargout1,0); %if ~iu, if nargout, reout = re; end, return, end [ny,nu] = size(d); elseif (nargin1==5), % State space system, with iu but w/o freq. vector error(abcdchk(a,b,c,d)); z = tzero(a,b,c,d); p = eig(a); zp = [z;p]; wpos = zp(find(abs(zp)>0)); if(min(abs(p)) == 0) wstart = max(eps, 0.03*min([1;wpos])); else wstart = max(eps, 0.03*min(abs(zp))); end wstop = max([1000;30*wpos]); w = logspace(log10(wstart),log10(wstop),max(51,10*max(size(zp))+1)); %w = freqint2(a,b,c,d,30); [ny,nu] = size(d); else error(abcdchk(a,b,c,d)); [ny,nu] = size(d); end if nu*ny==0, im=[]; w=[]; if nargout~=0, reout=[]; end, return, end ********************************************************************* % depart from the regular nyquist program here % now we have a frequency vector, a numerator and denominator % now we create code to go around all poles and zeroes here. if (nargin1==5) | (nargin1 ==4) | (nargin1 == 6) [num,den]=ss2tf(a,b,c,d); end tol = 1e-6; %defined tolerance for finding imaginary poles z = roots(num); p = roots(den); % ***** If all of the poles are at the origin, just move them a tad to the left*** if norm(p) == 0 if(isempty(z)) tad = 1e-1; else tad = min([1e-1; 0.1*abs(z)]); end length_p = length(p); p = -tad*ones(length_p,1); den = den(1,1)*[1 tad]; for ii = 2:length_p den = conv(den,[1 tad]); end zp = [z;p]; wpos = zp(find(abs(zp)>0)); if(min(abs(p)) == 0) wstart = max(eps, 0.03*min([1;wpos])); else wstart = max(eps, 0.03*min(abs(zp))); end wstop = max([1000;30*wpos]); w = logspace(log10(wstart),log10(wstop),max(51,10*max(size(zp))+1)); %w = freqint2(num,den,30); end zp = [z;p]; % combine the zeros and poles of the system nzp = length(zp); % number of zeros and poles ones_zp=ones(nzp,1); Ipo = find((abs(real(p))< tol) & (imag(p)>=0)); %index poles with zero real part + non-neg imag part if ~isempty(Ipo) % % **** only if we have such poles do we do the following:************************* po = p(Ipo); % poles with 0 real part and non-negative imag part % check for distinct poles [y,ipo] = sort(imag(po)); % sort imaginary parts po = po(ipo); dpo = diff(po); idpo = find(abs(dpo)> tol); idpo = [1;idpo+1]; % indexes of the distinct poles po = po(idpo); % only distinct poles are used nIpo = length(idpo); % # of such poles originflag = find(imag(po)==0); % locate origin pole s = []; % s is our frequency response vector w = sqrt(-1)*w; % create a jwo vector to evaluate all frequencies with for ii=1:nIpo % for all Ipo poles [nrows,ncolumns]=size(w); if nrows == 1 w = w.'; % if w is a row, make it a column end; if nIpo == 1 r(ii) = .1; else % check distances to other poles and zeroes pdiff = zp-po(ii)*ones_zp; % find the differences between % poles you are checking and other poles and zeros ipdiff = find(abs(pdiff)> tol); % ipdiff is all nonzero differences r(ii)=0.2*min(abs(pdiff(ipdiff))); % take half this difference r(ii)=min(r(ii),0.1); % take the minimum of this diff.and .1 end; t = linspace(-pi/2,pi/2,25); if (ii == originflag) t = linspace(0,pi/2,25); end; % gives us a vector of points around each Ipo s1 = po(ii)+r(ii)*(cos(t)+sqrt(-1)*sin(t)); % detour here s1 = s1.'; % make sure it is a column % Now here I reconstitute s - complex frequency - and % evaluate again. bottomvalue = po(ii)-sqrt(-1)*r(ii); % take magnitude of imag part if (ii == originflag) % if this is an origin point bottomvalue = 0; end; topvalue = po(ii)+sqrt(-1)*r(ii); % the top value where detour stops nbegin = find(imag(w) < imag(bottomvalue)); % nnbegin = length(nbegin); % find all the points less than encirclement if (nnbegin == 0)& (ii ~= originflag) % around jw root sbegin = 0; else sbegin = w(nbegin); end; nend = find(imag(w) > imag(topvalue)); % find all points greater than nnend = length(nend); % encirclement around jw root if (nnend == 0) send = 0; else send = w(nend); end w = [sbegin; s1; send]; % reconstituted half of jw axis end else w = sqrt(-1)*w; end %end % this ends the loop for imaginary axis poles % ************************************************************* % back to the regular nyquist program here % Compute frequency response if (nargin1==1)|(nargin1==2)|(nargin1==3) gt = freqresp(num,den,w); else gt = freqresp(a,b,c,d,iu,w); end % *********************************************************** % nw = length(gt); % mag = abs(gt); % scaling factor added % ang = angle(gt); % mag = log2(mag+1); % scale by log2(mag) throughout % for n = 1:nw % h(n,1) = mag(n,1)*(cos(ang(n,1))+sqrt(-1)*sin(ang(n,1))); % end; % recalculate G(jw) with scaling factor % gt = h; % *********************************************************** ret=real(gt); imt=imag(gt); % If no left hand arguments then plot graph. if nargout==0, status = ishold; plot(ret,imt,'r-',ret,-imt,'g--') % plot(real(w),imag(w)) set(gca, 'YLimMode', 'auto') limits = axis; % Set axis hold on because next plot command may rescale set(gca, 'YLimMode', 'auto') set(gca, 'XLimMode', 'manual') hold on % Make arrows for k=1:size(gt,2), g = gt(:,k); re = ret(:,k); im = imt(:,k); sx = limits(2) - limits(1); [sy,sample]=max(abs(2*im)); arrow=[-1;0;-1] + 0.75*sqrt(-1)*[1;0;-1]; sample=sample+(sample==1); reim=diag(g(sample,:)); d=diag(g(sample+1,:)-g(sample-1,:)); % Rotate arrow taking into account scaling factors sx and sy d = real(d)*sy + sqrt(-1)*imag(d)*sx; rot=d./abs(d); % Use this when arrow is not horizontal arrow = ones(3,1)*rot'.*arrow; scalex = (max(real(arrow)) - min(real(arrow)))*sx/50; scaley = (max(imag(arrow)) - min(imag(arrow)))*sy/50; arrow = real(arrow)*scalex + sqrt(-1)*imag(arrow)*scaley; xy =ones(3,1)*reim' + arrow; xy2=ones(3,1)*reim' - arrow; [m,n]=size(g); hold on plot(real(xy),-imag(xy),'r-',real(xy2),imag(xy2),'g-') end xlabel('Real Axis'), ylabel('Imag Axis') limits = axis; % Make cross at s = -1 + j0, i.e the -1 point if limits(2) >= -1.5 & limits(1) <= -0.5 % Only plot if -1 point is not far out. line1 = (limits(2)-limits(1))/50; line2 = (limits(4)-limits(3))/50; plot([-1+line1, -1-line1], [0,0], 'w-', [-1, -1], [line2, -line2], 'w-') end % Axis plot([limits(1:2);0,0]',[0,0;limits(3:4)]','w:'); plot(-1,0,'+k'); if ~status, hold off, end % Return hold to previous status return % Suppress output end %reout = ret; % plot(real(p),imag(p),'x',real(z),imag(z),'o');