Effects
Tips

Function nyquist1: Plotting Nyquist Frequency Response for Continuous-Time Linear Systems

Below is the function nyquist1.m. This function is a modified version of the nyquist command, and has all the same attributes as the original, with a few improvements. nyquist1.m takes poles on the imaginary axis into account when creating the Nyquist plot, and plots around them. Copy the following text into a file nyquist1.m, and put it in the same directory as the MATLAB software, or in a directory which is contained in MATLAB's search path.

         function [reout,imt,w] = nyquist1(a,b,c,d,iu,w)
         %NYQUIST1 Nyquist frequency response for continuous-time linear systems.
         %
         %       This Version of the  NYQUIST Command takes into account poles at the
         %       jw-axis and loops around them when creating the frequency vector  in order
         %       to produce the appropriate Nyquist Diagram (The NYQUIST command does
         %       not do this and therefore produces an incorrect plot when we have poles in the
         %       jw axis).
         %
         %       NOTE: This version of NYQUIST1 does not account for pole-zero
         %       cancellation.  Therefore, the user must simplify the transfer function before using
         %       this command.
         %
         %       NYQUIST(A,B,C,D,IU) produces a Nyquist plot from the single input
         %       IU to all the outputs of the system:
         %               .                                    -1
         %               x = Ax + Bu             G(s) = C(sI-A) B + D
         %               y = Cx + Du      RE(w) = real(G(jw)), IM(w) = imag(G(jw))
         %
         %       The frequency range and number of points are chosen automatically.
         %
         %       NYQUIST1(NUM,DEN) produces the Nyquist plot for the polynomial
         %       transfer function G(s) = NUM(s)/DEN(s) where NUM and DEN contain
         %       the polynomial coefficients in descending powers of s.
         %
         %       NYQUIST1(A,B,C,D,IU,W) or NYQUIST(NUM,DEN,W) uses the user-supplied
         %       freq. vector W which must contain the frequencies, in radians/sec,
         %       at which the Nyquist response is to be evaluated.  When invoked
         %       with left hand arguments,
         %               [RE,IM,W] = NYQUIST(A,B,C,D,...)
         %               [RE,IM,W] = NYQUIST(NUM,DEN,...)
         %       returns the frequency vector W and matrices RE and IM with as many
         %       columns as outputs and length(W) rows.  No plot is drawn on the
         %       screen.
         %       See also: LOGSPACE,MARGIN,BODE, and NICHOLS.
         %
         %       J.N. Little 10-11-85
         %       Revised ACWG 8-15-89, CMT 7-9-90, ACWG 2-12-91, 6-21-92,
         %               AFP 2-23-93
         %               WCM 8-31-97
         %
         %  ********************************************************************
         %  Modifications made to the nyquist - takes into account poles on jw axis.
         %  then goes around these to make up frequency vector
         if nargin==0, eval('exresp(''nyquist'')'), return, end
         %  --- Determine which syntax is being used ---
         nargin1 = nargin;
         nargout1 = nargout;
         if (nargin1==1),	% System form without frequency vector
         [num,den]=tfdata(a,'v');
         z = roots(num);
         p = roots(den);
         zp = [z;p];
         wpos = zp(find(abs(zp)>0));
         if(min(abs(p)) == 0)
         wstart = max(eps, 0.03*min([1;wpos]));
         else
         wstart = max(eps, 0.03*min(abs(zp)));
         end
         wstop = max([1000;30*wpos]);
         w =
         logspace(log10(wstart),log10(wstop),max(51,10*max(size(zp))+1));
         %w = freqint2(num,den,30);
         [ny,nn] = size(num); nu = 1;
         %error('Wrong number of input arguments.');
         elseif (nargin1==2),
         if(isa(a,'ss')|isa(a,'tf')|isa(a,'zpk')) % System with frequency vector
         [num,den]=tfdata(a,'v');
         w = b;
         else	% Transfer function form without frequency vector
         num  = a; den = b;
         z = roots(num);
         p = roots(den);
         zp = [z;p];
         wpos = zp(find(abs(zp)>0));
         if(min(abs(p)) == 0)
         wstart = max(eps, 0.03*min([1;wpos]));
         else
         wstart = max(eps, 0.03*min(abs(zp)));
         end
         wstop = max([1000;30*wpos]);
         w = logspace(log10(wstart),log10(wstop),max(51,10*max(size(zp))+1));
         %w = freqint2(num,den,30);
         end
         [ny,nn] = size(num); nu = 1;
         elseif (nargin1==3),     % Transfer function form with frequency vector
         num = a; den = b;
         w = c;
         [ny,nn] = size(num); nu = 1;
         elseif (nargin1==4),     % State space system, w/o iu or frequency vector
         error(abcdchk(a,b,c,d));
         [num,den] = ss2tf(a,b,c,d);
         [z,p,k]= ss2zp(a,b,c,d);
         [num,den] = zp2tf(z,p,k);
         zp = [z;p];
         wpos = zp(find(abs(zp)>0));
         if(min(abs(p)) == 0)
         wstart = max(eps, 0.03*min([1;wpos]));
         else
         wstart = max(eps, 0.03*min(abs(zp)));
         end
         wstop = max([1000;30*wpos]);
         w = logspace(log10(wstart),log10(wstop),max(51,10*max(size(zp))+1));
         %w = freqint2(a,b,c,d,30);
         nargin1 = 2;%[iu,nargin,re,im]=mulresp('nyquist',a,b,c,d,w,nargout1,0);
         %if ~iu, if nargout, reout = re; end, return, end
         [ny,nu] = size(d);
         elseif (nargin1==5),     % State space system, with iu but w/o freq. vector
         error(abcdchk(a,b,c,d));
         z = tzero(a,b,c,d);
         p = eig(a);
         zp = [z;p];
         wpos = zp(find(abs(zp)>0));
         if(min(abs(p)) == 0)
         wstart = max(eps, 0.03*min([1;wpos]));
         else
         wstart = max(eps, 0.03*min(abs(zp)));
         end
         wstop = max([1000;30*wpos]);
         w = logspace(log10(wstart),log10(wstop),max(51,10*max(size(zp))+1));
         %w = freqint2(a,b,c,d,30);
         [ny,nu] = size(d);
         else
         error(abcdchk(a,b,c,d));
         [ny,nu] = size(d);
         end
         if nu*ny==0, im=[]; w=[]; if nargout~=0, reout=[]; end, return, end
         *********************************************************************
         % depart from the regular nyquist program here
         % now we have a frequency vector, a numerator and denominator
         % now we create code to go around all poles and zeroes here.
         if (nargin1==5) | (nargin1 ==4) | (nargin1 == 6)
         [num,den]=ss2tf(a,b,c,d);
         end
         tol = 1e-6;  %defined tolerance for finding imaginary poles
         z = roots(num);
         p = roots(den);
         % ***** If all of the poles are at the origin, just move them a tad to the left***
         if norm(p) == 0
         if(isempty(z))
         tad = 1e-1;
         else
         tad = min([1e-1; 0.1*abs(z)]);
         end
         length_p = length(p);
         p = -tad*ones(length_p,1);
         den = den(1,1)*[1  tad];
         for ii = 2:length_p
         den = conv(den,[1  tad]);
         end
         zp = [z;p];
         wpos = zp(find(abs(zp)>0));
         if(min(abs(p)) == 0)
         wstart = max(eps, 0.03*min([1;wpos]));
         else
         wstart = max(eps, 0.03*min(abs(zp)));
         end
         wstop = max([1000;30*wpos]);
         w = logspace(log10(wstart),log10(wstop),max(51,10*max(size(zp))+1));
         %w = freqint2(num,den,30);
         end
         zp = [z;p];        % combine the zeros and poles of the system
         nzp = length(zp);  % number of zeros and poles
         ones_zp=ones(nzp,1);
         Ipo = find((abs(real(p))< tol) & (imag(p)>=0)); %index poles with zero real part + non-neg imag part
         if  ~isempty(Ipo)   %
         % **** only if we have such poles do we do the following:*************************
         po = p(Ipo); % poles with 0 real part and non-negative imag part
         % check for distinct poles
         [y,ipo] = sort(imag(po));  % sort imaginary parts
         po = po(ipo);
         dpo = diff(po);
         idpo = find(abs(dpo)> tol);
         idpo = [1;idpo+1];   % indexes of the distinct poles
         po = po(idpo);   % only distinct poles are used
         nIpo = length(idpo); % # of such poles
         originflag = find(imag(po)==0);  % locate origin pole
         s = [];  % s is our frequency response vector
         w = sqrt(-1)*w;  % create a jwo vector to evaluate all frequencies with
         for ii=1:nIpo % for all Ipo poles
         [nrows,ncolumns]=size(w);
         if nrows == 1
         w = w.';  % if w is a row, make it a column
         end;
         if nIpo == 1
         r(ii) = .1;
         else            % check distances to other poles and zeroes
         pdiff = zp-po(ii)*ones_zp;  % find the differences between
         % poles you are checking and other poles and zeros
         ipdiff = find(abs(pdiff)> tol); % ipdiff is all nonzero
         differences
         r(ii)=0.2*min(abs(pdiff(ipdiff))); % take half this difference
         r(ii)=min(r(ii),0.1);  % take the minimum of this diff.and .1
         end;
         t = linspace(-pi/2,pi/2,25);
         if (ii == originflag)
         t = linspace(0,pi/2,25);
         end;    % gives us a vector of points around each Ipo
         s1 = po(ii)+r(ii)*(cos(t)+sqrt(-1)*sin(t));  % detour here
         s1 = s1.';  % make sure it is a column
         % Now here I reconstitute s - complex frequency - and
         % evaluate again.
         bottomvalue = po(ii)-sqrt(-1)*r(ii);  % take magnitude of imag part
         if (ii ==  originflag)  % if this is an origin point
         bottomvalue = 0;
         end;
         topvalue = po(ii)+sqrt(-1)*r(ii); % the top value where detour stops
         nbegin = find(imag(w) < imag(bottomvalue)); %
         nnbegin = length(nbegin); % find all the points less than encirclement
         if (nnbegin == 0)& (ii ~= originflag)    % around jw root
         sbegin = 0;
         else sbegin = w(nbegin);
         end;
         nend = find(imag(w) > imag(topvalue));  % find all points greater than
         nnend = length(nend);    % encirclement around jw root
         if (nnend == 0)
         send = 0;
         else send = w(nend);
         end
         w = [sbegin; s1; send];  % reconstituted half of jw axis
         end
         else
         w = sqrt(-1)*w;
         end
         %end  % this ends the loop for imaginary axis poles
         % *************************************************************
         % back to the regular nyquist program here
         % Compute frequency response
         if (nargin1==1)|(nargin1==2)|(nargin1==3)
         gt = freqresp(num,den,w);
         else
         gt = freqresp(a,b,c,d,iu,w);
         end
         % ***********************************************************
         %        nw = length(gt);
         %        mag = abs(gt);   % scaling factor added
         %        ang = angle(gt);
         %        mag = log2(mag+1);    % scale by log2(mag) throughout
         %        for n = 1:nw
         %                h(n,1) = mag(n,1)*(cos(ang(n,1))+sqrt(-1)*sin(ang(n,1)));
         %        end;  % recalculate G(jw) with scaling factor
         %        gt = h;
         % ***********************************************************
         ret=real(gt);
         imt=imag(gt);
         % If no left hand arguments then plot graph.
         if nargout==0,
         status = ishold;
         plot(ret,imt,'r-',ret,-imt,'g--')
         %  plot(real(w),imag(w))
         set(gca, 'YLimMode', 'auto')
         limits = axis;
         % Set axis hold on because next plot command may rescale
         set(gca, 'YLimMode', 'auto')
         set(gca, 'XLimMode', 'manual')
         hold on
         % Make arrows
         for k=1:size(gt,2),
         g = gt(:,k);
         re = ret(:,k);
         im = imt(:,k);
         sx = limits(2) - limits(1);
         [sy,sample]=max(abs(2*im));
         arrow=[-1;0;-1] + 0.75*sqrt(-1)*[1;0;-1];
         sample=sample+(sample==1);
         reim=diag(g(sample,:));
         d=diag(g(sample+1,:)-g(sample-1,:));
         % Rotate arrow taking into account scaling factors sx and sy
         d = real(d)*sy + sqrt(-1)*imag(d)*sx;
         rot=d./abs(d);          % Use this when arrow is not horizontal
         arrow = ones(3,1)*rot'.*arrow;
         scalex = (max(real(arrow)) - min(real(arrow)))*sx/50;
         scaley = (max(imag(arrow)) - min(imag(arrow)))*sy/50;
         arrow = real(arrow)*scalex + sqrt(-1)*imag(arrow)*scaley;
         xy =ones(3,1)*reim' + arrow;
         xy2=ones(3,1)*reim' - arrow;
         [m,n]=size(g);
         hold on
         plot(real(xy),-imag(xy),'r-',real(xy2),imag(xy2),'g-')
         end
         xlabel('Real Axis'), ylabel('Imag Axis')
         limits = axis;
         % Make cross at s = -1 + j0, i.e the -1 point
         if limits(2) >= -1.5  & limits(1) <= -0.5 % Only plot if -1 point is not far out.
         line1 = (limits(2)-limits(1))/50;
         line2 = (limits(4)-limits(3))/50;
         plot([-1+line1, -1-line1], [0,0], 'w-', [-1, -1], [line2, -line2], 'w-')
         end
         % Axis
         plot([limits(1:2);0,0]',[0,0;limits(3:4)]','w:');
         plot(-1,0,'+k');
         if ~status, hold off, end    % Return hold to previous status
         return % Suppress output
         end
         %reout = ret;
         %   plot(real(p),imag(p),'x',real(z),imag(z),'o');